Introduction to Algorithms

Kiyoko F. Aoki-Kinoshita

Computational problems

- A computational problem specifies an input-output relationship
 - What does the input look like?
 - What should the output be for each input?
- Example:
 - Input: an integer number N
 - Output: Is the number prime?
- Example:
 - Input: A list of names of people
 - Output: The same list sorted alphabetically
- Example:
 - Input: A picture in digital format
 - Output: An English description of what the picture shows

Algorithms

- An algorithm is an exact specification of how to solve a computational problem
- An algorithm must specify every step completely, so a computer can implement it without any further "understanding"
- An algorithm must work for all possible inputs of the problem.
- Algorithms must be:
 - Correct: For each input, terminate and produce an appropriate output
 - Efficient: run as quickly as possible, and use as little memory as possible – more about this later
- There can be many different algorithms for each computational problem.

Describing Algorithms

- Algorithms can be implemented in any programming language
- Usually we use "pseudo-code" to describe algorithms

Testing whether input N is prime:

```
For j = 2 .. N-1
    If the remainder of j/N is 0
        Output "N is composite" and halt
Output "N is prime"
```

In this course we will just describe algorithms in Perl and pseudocode

Greatest Common Divisor

- The first algorithm "invented" in history was Euclid's algorithm for finding the greatest common divisor (GCD) of two natural numbers
- <u>Definition</u>: The GCD of two natural numbers x, y is the largest integer j that divides both evenly (with remainder 0).

The GCD Problem:

- Input: natural numbers x, y
- Output: GCD(x,y) their GCD

Euclid's GCD Algorithm

print gcd(14, 21), "\n";

Euclid's GCD Algorithm – sample

while (\$y != 0) { // while y is not equal to 0
 \$t = \$x % \$y; // get the modulus of x and y
 \$x = \$y; // replace x by y
 \$y = \$t; // replace y by t

Example: Computing GCD(48,120)

		t	x	У
After () rounds		72	120
After 1	l round	72	120	72
After 2	2 rounds	48	72	48
After 3	3 rounds	24	48	24
After 4	4 rounds	0	24	0

Output: 24

Termination of Euclid's Algorithm

- Why does this algorithm terminate?
 - After any iteration we have that x > y since the new value of y is the remainder of the division by the new value of x.
 - In further iterations, we replace (x, y) with (y, x%y), and x%y < x, thus the numbers decrease in each iteration.
 - Formally, the value of xy decreases at each iteration (except, maybe, the first one). When it reaches 0, the algorithm must terminate.

```
sub gcd {
    my ($x, $y) = @_; // retrieve input x and y
    while ($y != 0) { // while y is not equal to 0
        $t = $x % $y; // get the modul us of x and y
        $x = $y; // replace x by y
        $y = $t; // replace y by t
    }
    return $x; // return the result (gcd of x and y)
}
```

Introduction to Algorithms

Running Time Analysis

How fast will your program run?

- The running time of your program will depend upon:
 - The algorithm
 - The input
 - Your implementation of the algorithm in a programming language
 - The compiler you use
 - □ The operating system (OS) on your computer
 - Your computer hardware
 - Maybe other things: temperature outside; other programs on your computer; ...
- Our Motivation: analyze the running time of an algorithm as a function of only simple parameters of the input.

Basic idea: counting operations

- Each algorithm performs a sequence of basic operations:
 - Arithmetic: (low + high)/2
 - Comparison: if (x > 0) ...
 - Assignment: temp = x
 - Branching: while (y != 0) { ... }

• ...

- Idea: count the number of basic operations performed on the input.
- Difficulties:
 - Which operations are basic?
 - Not all operations take the same amount of time.
 - Operations take different times with different hardware or compilers

Asymptotic running times

- Operation counts are only problematic in terms of constant factors.
- The general form of the function describing the running time is invariant over hardware, languages or compilers!

```
sub myMethod{
  my $N = shift @_;
  my $sq = 0;
  for($j=0; $j<$N ; $j++)
    for($k=0; $k<$N ; $k++)
        $sq++;
    return $sq;
}</pre>
```

- Running time is "about" N^2 .
- We use "Big-O" notation, and say that the running time is $O(N^2)$

Asymptotic behavior of functions

Mathematical Formalization

Definition: Let f and g be functions from the natural numbers to the natural numbers. We write f=O(g) if there exists a constant c such that for all n: $f(n) \le cg(n)$.

 $f=O(g) \iff \exists c \forall n: f(n) \leq cg(n)$

- This is a mathematically formal way of ignoring constant factors, and looking only at the "shape" of the function.
- f=O(g) should be considered as saying that "f is at most g, up to constant factors".
- We usually will have f be the running time of an algorithm and g a nicely written function. E.g. The running time of the previous algorithm was O(N²).

Asymptotic analysis of algorithms

- We usually embark on an asymptotic worst case analysis of the running time of the algorithm.
- Asymptotic:
 - Formal, exact, depends only on the algorithm
 - Ignores constants
 - Applicable mostly for large input sizes
- Worst Case:
 - Bounds on running time must hold for all inputs.
 - Thus the analysis considers the worst-case input.
 - Sometimes the "average" performance can be much better
 - Real-life inputs are rarely "average" in any formal sense

The running time of Euclid's GCD Algorithm

- How fast does Euclid's algorithm terminate?
 - After the first iteration we have that x > y. In each iteration, we replace (x, y) with (y, x%y).
 - □ In an iteration where x > 1.5y then x% y < y < 2x/3.
 - In an iteration where $x \le 1.5y$ then $x\% y \le y/2 < 2x/3$.
 - Thus, the value of xy decreases by a factor of at least 2/3 each iteration (except, maybe, the first one).

```
sub gcd {
    my ($x, $y) = @_; // retrieve input x and y
    while ($y != 0) { // while y is not equal to 0
        $t = $x % $y; // get the modulus of x and y
        $x = $y; // replace x by y
        $y = $t; // replace y by t
    }
    return $x; // return the result (gcd of x and y)
}
```

The running time of Euclid's

Algorithm

- <u>Theorem</u>: Euclid's GCD algorithm runs it time O(N), where N is the input length (N=log₂x + log₂y).
- Proof:
 - Every iteration of the loop (except maybe the first) the value of xy decreases by a factor of at least 2/3. Thus after k+1 iterations the value of xy is at most $(2/3)^k$ the original value.
 - Thus the algorithm must terminate when k satisfies: $xy(2/3)^k < 1$ (for the original values of x, y).
 - Thus the algorithm runs for at most $1 + \log_{3/2} xy$ iterations.
 - Each iteration has only a constant *L* number of operations, thus the total number of operations is at most $(1 + \log_{3/2} xy)L$
 - Formally, $(1 + \log_{3/2} xy)L \le L(1 + 2\log_2 x + 2\log_2 y) \le 3LN$
 - Thus the running time is O(N).

Introduction to Algorithms

Recursion

Designing Algorithms

- There is no single recipe for inventing algorithms
- There are basic rules:
 - Understand your problem well may require much mathematical analysis!
 - Use existing algorithms (reduction) or algorithmic ideas
- There is a single basic algorithmic technique:

Divide and Conquer

- In its simplest (and most useful) form it is simple induction
 - □ In order to solve a problem, solve a similar problem of smaller size
- The key conceptual idea:
 - Think only about how to use the smaller solution to get the larger one
 - Do not worry about how to solve the smaller problem (it will be solved using an even smaller one)

Recursion

- A recursive method is a method that contains a call to itself
- Technically:
 - All modern computing languages allow writing methods that call themselves
 - We will discuss how this is implemented later

Conceptually:

- This allows programming in a style that reflects divide-nconquer algorithmic thinking
- At the beginning recursive programs are confusing after a while they become clearer than non-recursive variants

Factorial

```
sub factorial {
    my $n = shift @_; // retrieve input
    if ($n == 0) {
        return 1; // if input is 0, return 1
    } el se {
    // otherwise, compute the factorial of $n-1,
    // multiply it by $n and return the product
        return $n * factorial ($n-1);
    }
}
print "5! = ", factorial (5), "n";
```

Elements of a recursive program

 Basis: a case that can be answered without using further recursive calls

In our case: if (\$n==0) { return 1; }

- Creating the smaller problem, and invoking a recursive call on it
 - In our case: factorial(\$n-1)
- Finishing to solve the original problem
 - In our case: return \$n; //solution of recursive call

Tracing the factorial method

```
print "5! = ", factorial (5), "n";
      5 * factorial(4)
          4 * factorial(3)
              3 * factorial(2)
                  2 * factorial(1)
                     1 * factorial(0)
                         return 1
                     return 1
                  return 2
              return 6
           return 24
       return 120
```

Correctness of factorial method

- Theorem: For every positive integer n, factorial (\$n) returns the value n!.
- Proof: By induction on n:
- Basis: for *n=0*, factorial (0) returns *1=0!*.
- Induction step: When called on n>1, factorial calls factorial (\$n-1), which by the induction hypothesis returns (n-1)!. The returned value is thus n*(n-1)!=n!.

Raising to power – take 1

```
sub power {
    my ($x, $n) = @_; // retrieve the input
    if ($n == 0) { // if $n is 0, return 1
        return 1.0;
    }
    // otherwise, return $x multiplied by the
    // result of power of x to the (n-1)th
    return $x * power($x, $n-1);
}
print "3^9 = ", power(3, 9), "n";
```

Running time analysis

- Simplest way to calculate the running time of a recursive program is to add up the running times of the separate levels of recursion.
- In the case of the power method:
 - □ There are *n*+1 levels of recursion
 - power(x,n), power(x,n-1), power(x, n-2), ... power(x,0)
 - □ Each level takes O(1) steps
 - Total time = O(n)

Raising to power – take 2

```
sub power2 {
  my ($x, $n) = @_;
  if (\$n == 0) {
    return 1.0;
  }
  if (\$n\%2 == 0) {
    my \ t = power2(\x, \n/2);
    return $t*$t;
  }
  return $x * power2($x, $n-1);
}
```

Analysis

- <u>Theorem</u>: For any *x* and positive integer *n*, the power method returns x^n .
- Proof: by complete induction on *n*.
 - □ Basis: For n=0, we return 1.
 - □ If n is even, we return power(x,n/2)*power(x,n/2). By the induction hypothesis power(x,n/2) returns $x^{n/2}$, so we return $(x^{n/2})^2 = x^n$
 - □ If n is odd, we return x*power(x,n-1). By the induction hypothesis power(x,n-1) returns x^{n-1} , so we return $x \cdot x^{n-1} = x^n$.
 - The running time is now O(log n):
 - After 2 levels of recursion n has decreased by a factor of at least two (since either n or n-1 is even, in which case the recursive call is with n/2)
 - Thus we reach n==0 after at most $2log_2n$ levels of recursion
 - Each level still takes O(1) time.

Introduction to Algorithms

Algorithms for bioinformatics

Bring in the Bioinformaticians

- Gene similarities between two genes with known and unknown function alert biologists to some possibilities
- Computing a similarity score between two genes tells how likely it is that they have similar functions
- Dynamic programming is a technique for revealing similarities between genes
- The Change Problem is a good problem to introduce the idea of dynamic programming

The Change Problem

<u>Goal</u>: Convert some amount of money *M* into given denominations, using the fewest possible number of coins

<u>Input</u>: An amount of money *M*, and an array of *d* denominations $c = (c_1, c_2, ..., c_d)$, in a decreasing order of value $(c_1 > c_2 > ... > c_d)$

<u>Output</u>: A list of *d* integers $i_1, i_2, ..., i_d$ such that $c_1i_1 + c_2i_2 + ... + c_di_d = M$ and $i_1 + i_2 + ... + i_d$ is minimal

Change Problem: Example

Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value?

Only one coin is needed to make change for the values 1, 3, and 5

Change Problem: Example (cont'd)

Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value?

However, two coins are needed to make change for the values 2, 4, 6, 8, and 10.

Change Problem: Example (cont'd)

Given the denominations 1, 3, and 5, what is the minimum number of coins needed to make change for a given value?

Lastly, three coins are needed to make change for the values 7 and 9

Change Problem: Recurrence This example is expressed by the following recurrence relation:

 $minNumCoins(M) = {min of of}$

minNumCoins(M-1) + 1

minNumCoins(M-3) + 1

minNumCoins(M-5) + 1

Given the denominations $c: c_1, c_2, ..., c_d$, the recurrence relation is: $(minNumCoins(M-c_1) + 1)$

 $minNumCoins(M-c_2) + 1$

minNumCoins(M) =

min of ≺

 $minNumCoins(M-c_d) + 1$

Change Problem: A Recursive Algorithm

1.	RecursiveChange(<i>M,c,d</i>)
2.	if $M = 0$
3.	return 0
4.	<i>bestNumCoins</i> = infinity
5.	for <i>i</i> = 1 to <i>d</i>
6.	if $M \ge c_i$
7.	numCoins = RecursiveChange(M - c _i , c, d)
8.	if numCoins + 1 < bestNumCoins
9.	bestNumCoins = numCoins + 1
10.	return <i>bestNumCoins</i>

RecursiveChange Is Not Efficient

It recalculates the optimal coin combination for a given amount of money repeatedly

Optimal coin combo for 70 cents is computed 9 times!

The RecursiveChange Tree

We Can Do Better

- We're re-computing values in our algorithm more than once
- Save results of each computation for 0 to **M**
- This way, we can do a reference call to find an already computed value, instead of re-computing each time
- Running time becomes *M***d*, where *M* is the value of money and *d* is the number of denominations

The Change Problem: Dynamic Programming

- 1. DPChange(*M,c,d*)
- *2.* $bestNumCoins_0 = 0$
- 3. for m = 1 to M
- 4. *bestNumCoins*_m = infinity
- 5. **for** i = 1 to **d**
- 6. if $m \ge c_i$

8.

- 7. **if** $bestNumCoins_{m-c_i} + 1 < bestNumCoins_m$
 - $bestNumCoins_m = bestNumCoins_{m-c_i} + 1$
- 9. return *bestNumCoins_M*

DPChange: Example

Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid

Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted grid.

<u>Input</u>: A weighted grid *G* with two distinct vertices, one labeled "source" and the other labeled "sink"

Output: A longest path in G from "source" to "sink"

MTP: An Example

MTP: Simple Recursive Program

<u>MT(*n*,*m*)</u>

if n=0 or m=0
 return MT(n,m)
x = MT(n-1,m)+
 length of the edge from (n- 1,m) to (n,m)
y = MT(n,m-1)+
 length of the edge from (n,m-1) to (n,m)
return max{x,y}

Calculate optimal path score for each vertex in the graph

• Each vertex's score is the maximum of the prior vertices score plus the weight of the respective edge in between

MTP: Dynamic Programming (cont'd) source $S_{0.2} = 3$ -5 $S_{1,1} = 4$ $S_{2.0} = 8$

MTP: Recurrence

Computing the score for a point *(i,j)* by the recurrence relation:

 $s_{i,j} = \max \begin{cases} s_{i-1,j} + \text{weight of the edge between } (i-1,j) \text{ and } (i,j) \\ s_{i,j-1} + \text{weight of the edge between } (i,j-1) \text{ and } (i,j) \end{cases}$

The running time is $n \times m$ for a n by m grid (n = # of rows, m = # of columns)

Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is then given by:

 $s_{B} = \max_{\mathbf{of}} \begin{cases} s_{A1} + \text{weight of the edge} (A_{1}, B) \\ s_{A2} + \text{weight of the edge} (A_{2}, B) \\ s_{A3} + \text{weight of the edge} (A_{3}, B) \end{cases}$

Manhattan Is Not A Perfect Grid (cont'd)

Computing the score for point **x** is given by the recurrence relation:

Predecessors (x) = set of vertices that have edges
 leading to x

The running time for a graph G(V, E)
 (V is the set of all vertices and E is the set of all edges)
 is O(E) since each edge is evaluated once

Traveling in the Grid

•The only hitch is that one must decide on the order in which to visit the vertices

•By the time the vertex x is analyzed, the values s_y for all its predecessors y should be computed – otherwise we are in trouble.

•We need to traverse the vertices in some order

Traversing the Manhattan Grid

3 different strategies:
a) Column by column
b) Row by row
c) Along diagonals

Alignment: 2 row representation

Given 2 DNA sequences **v** and **w**:

v:ATCTGATm = 7w:TGCATAn = 6

Alignment: $2 * \mathbf{k}$ matrix ($\mathbf{k} \ge \max(\mathbf{m}, \mathbf{n})$)

letters of v	Α	т		G	т	т	Α	т	
letters of w	Α	т	С	G	т		Α		С
	4 matches			2 insertions			2 deletions		

Aligning DNA Sequences

- 4 matches
- 1 mismatches
- 2 insertions
- 2 deletions

Note: insertions and deletions are together called indels Longest Common Subsequence (LCS) – Alignment without Mismatches

• Given two sequences

$$v = v_1 v_2 \dots v_m$$
 and $w = w_1 w_2 \dots w_n$

The LCS of v and w is a sequence of positions in

v:
$$1 \le i_1 < i_2 < ... < i_t \le m$$

and a sequence of positions in

w:
$$1 \le j_1 < j_2 < \dots < j_t \le n$$

such that i_t -th letter of **v** equals to j_t -letter of **w** and **t** is maximal

LCS: Example

 $(0,0) \rightarrow (1,0) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (3,3) \rightarrow (3,4) \rightarrow (4,5) \rightarrow (5,5) \rightarrow (6,6) \rightarrow (7,6) \rightarrow (8,7)$

Matches shown in red Matches shown in red positions in *v*: 2 < 3 < 4 < 6 < 8positions in *w*: 1 < 3 < 5 < 6 < 7Every common subsequence is a path in 2-D grid

LCS: Dynamic Programming

- Find the LCS of two strings
 - Input: A weighted graph G with two distinct vertices, one labeled "source" one labeled "sink"
 - <u>Output</u>: A longest path in *G* from "source" to "sink"

LCS Problem as Manhattan Tourist Problem

Computing LCS

Let \mathbf{v}_i = prefix of \mathbf{v} of length i: $v_1 \dots v_i$

and w_j = prefix of w of length j: $w_1 \dots w_j$ The length of LCS(v_i, w_j) is computed by:

$$s_{i,j} = \max \begin{cases} s_{i-1,j} & i-1,j-1 & i-1,j \\ s_{i,j-1} & s_{i-1,j-1} + 1 & \text{if } V_i = W_j & i,j-1 & i,j-1 \\ \end{array}$$

Every Path in the Grid Corresponds to an Alignment

The Alignment Grid

Every alignment path is from source to sink

Alignments in Edit Graph (cont'd)

and → represent indels in v and w with score 0. represent matches with score 1.

• The score of the alignment path is 5.

Every path in the edit graph corresponds to an alignment:

Alignment as a Path in the Edit Graph

<u>Old Alignment</u> 0122345677 v= AT_GTTAT_ w= ATCGT_A_C 0123455667

Dynamic Programming Example

Initialize 1st row and 1st column to be all zeroes.

Or, to be more precise, initialize *O*th row and *O*th column to be all zeroes.

Dynamic Programming Example

Backtracking Example

Find a match in row and column 2.

j=2, *i*=4,5,7 is a match (T).

Since
$$v_i = w_{j, s_{i,j} = s_{i-1,j-1} + 1$$

$$S_{2,2} = [S_{1,1} = 1] + 1$$

$$S_{2,5} = [S_{1,4} = 1] + 1$$

$$S_{4,2} = [S_{3,1} = 1] + 1$$

$$S_{5,2} = [S_{4,1} = 1] + 1$$

$$S_{7,2} = [S_{6,1} = 1] + 1$$

Backtracking Example

Continuing with the dynamic programming algorithm gives this result.

LCS Algorithm

Now What?

- LCS(v,w) created the alignment grid
- Now we need a way to read the best alignment of v and w
- Follow the arrows backwards from sink

Printing LCS: Backtracking

PrintLCS(b,v,*i*,*j*) 1. if i = 0 or j = 02. return 3. if $b_{i,i} = "```$ 4. PrintLCS(b,v,i-1,j-1) 5. print V_i 6. else 7. if $b_{i,i} =$ " \uparrow " 8. **PrintLCS**(b,v,*i*-1,*j*) 9. else 10. **PrintLCS**(b,v,*i*,*j*-1) 11.

LCS Runtime

- It takes O(*nm*) time to fill in the *nxm* dynamic programming matrix.
- Why O(nm)? The pseudocode consists of a nested "for" loop inside of another "for" loop to set up a nxm matrix.

Summary

- The running times of algorithms is important!
 - If it doesn't scale up, it won't be useful, especially in bioinformatics
- Recursion is a basic technique which is useful for breaking down problems into simpler ones
- Dynamic programming, which uses recursion, is often used in bioinformatics as well
 - Shown to be mathematically accurate
 - However, it can be inefficient for more than two sequences
 - BLAST and FASTA use heuristics (human-like techniques to speed up the computations)