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Computational problems
A computational problem specifies an input-output relationship

What does the input look like?
What should the output be for each input?

Example:
Input: an integer number N
Output: Is the number prime?

Example:
Input: A list of names of people
Output: The same list sorted alphabetically

Example:
Input: A picture in digital format
Output: An English description of what the picture shows



Algorithms
An algorithm is an exact specification of how to solve a 
computational problem
An algorithm must specify every step completely, so a 
computer can implement it without any further 
“understanding”
An algorithm must work for all possible inputs of the 
problem.
Algorithms must be:

Correct: For each input, terminate and produce an appropriate 
output
Efficient: run as quickly as possible, and use as little memory 
as possible – more about this later

There can be many different algorithms for each 
computational problem.



Describing Algorithms

Algorithms can be implemented in any programming 
language
Usually we use “pseudo-code” to describe 
algorithms

In this course we will just describe algorithms in Perl 
and pseudocode

Testing whether input N is prime:

For j = 2 .. N-1
If the remainder of j/N is 0
Output “N is composite” and halt

Output “N is prime”



Greatest Common Divisor

The first algorithm “invented” in history was Euclid’s 
algorithm for finding the greatest common divisor 
(GCD) of two natural numbers
Definition: The GCD of two natural numbers x, y is 
the largest integer j that divides both evenly (with 
remainder 0).

The GCD Problem:
Input: natural numbers x, y
Output: GCD(x,y) – their GCD



Euclid’s GCD Algorithm

sub gcd {

my ($x, $y) = @_; // retrieve input x and y

while ($y != 0) {  // while y is not equal to 0

$t = $x % $y; // get the modulus of x and y

$x = $y;   // replace x by y

$y = $t;   // replace y by t

}

return $x; // return the result (gcd of x and y)

}

print gcd(14,21),”\n”;



Euclid’s GCD Algorithm – sample 
run

Example: Computing GCD(48,120)

t x       y     
After 0 rounds      -- 72      120     
After 1 round       72      120     72
After 2 rounds      48      72      48
After 3 rounds      24      48      24
After 4 rounds      0       24      0  

Output: 24

while ($y != 0) {  // while y is not equal to 0

$t = $x % $y; // get the modulus of x and y

$x = $y;   // replace x by y

$y = $t;   // replace y by t

}



Termination of Euclid’s Algorithm
Why does this algorithm terminate?

After any iteration we have that x > y since the new value of y is the 
remainder of the division by the new value of x.
In further iterations, we replace (x, y) with (y, x%y), and x%y < x, thus 
the numbers decrease in each iteration.
Formally, the value of xy decreases at each iteration (except, maybe, 
the first one).  When it reaches 0, the algorithm must terminate.

sub gcd {

my ($x, $y) = @_; // retrieve input x and y

while ($y != 0) {  // while y is not equal to 0

$t = $x % $y; // get the modulus of x and y

$x = $y;   // replace x by y

$y = $t;   // replace y by t

}

return $x; // return the result (gcd of x and y)

}



Introduction to Algorithms

Running Time Analysis



How fast will your program run?
The running time of your program will depend upon:

The algorithm
The input
Your implementation of the algorithm in a programming 
language
The compiler you use
The operating system (OS) on your computer
Your computer hardware
Maybe other things: temperature outside; other programs 
on your computer; …

Our Motivation: analyze the running time of an 
algorithm as a function of only simple parameters of 
the input.



Basic idea: counting operations
Each algorithm performs a sequence of basic 
operations:

Arithmetic:        (low + high)/2
Comparison:     if ( x > 0 ) …
Assignment:      temp = x
Branching:         while ( y != 0 ) { … }
…

Idea: count the number of basic operations performed 
on the input.
Difficulties:

Which operations are basic?
Not all operations take the same amount of time.
Operations take different times with different hardware or 
compilers



Asymptotic running times
Operation counts are only problematic in terms of constant 
factors.
The general form of the function describing the running time is 
invariant over hardware, languages or compilers!

Running time is “about” .  
We use “Big-O” notation, and say that the running time is     
O(    )

2N
2N

sub myMethod{

my $N = shift @_;

my $sq = 0;

for($j=0; $j<$N ; $j++)

for($k=0; $k<$N ; $k++)

$sq++;

return $sq;

}



Asymptotic behavior of functions



Mathematical Formalization

Definition: Let f and g be functions from the natural numbers to 
the natural numbers.  We write f=O(g) if there exists a constant c
such that for all n: f(n) ≤ cg(n).  

f=O(g) ⇔ ∃ c∀ n: f(n) ≤ cg(n)
This is a mathematically formal way of ignoring constant factors, 
and looking only at the “shape” of the function.
f=O(g) should be considered as saying that “f is at most g, up to 
constant factors”.
We usually will have f be the running time of an algorithm and g a 
nicely written function.  E.g. The running time of the previous 
algorithm was O(N2).



Asymptotic analysis of algorithms

We usually embark on an asymptotic worst case
analysis of the running time of the algorithm.
Asymptotic: 

Formal, exact, depends only on the algorithm
Ignores constants
Applicable mostly for large input sizes

Worst Case:
Bounds on running time must hold for all inputs.
Thus the analysis considers the worst-case input.
Sometimes the “average” performance can be much better
Real-life inputs are rarely “average” in any formal sense



The running time of Euclid’s GCD Algorithm
How fast does Euclid’s algorithm terminate?

After the first iteration we have that x > y.  In each iteration, we 
replace (x, y) with (y, x%y).  
In an iteration where x>1.5y then x%y < y < 2x/3.
In an iteration where x ≤ 1.5y then x%y ≤ y/2 < 2x/3.
Thus, the value of xy decreases by a factor of at least 2/3 each 
iteration (except, maybe, the first one).  

sub gcd {

my ($x, $y) = @_; // retrieve input x and y

while ($y != 0) {  // while y is not equal to 0

$t = $x % $y; // get the modulus of x and y

$x = $y;   // replace x by y

$y = $t;   // replace y by t

}

return $x; // return the result (gcd of x and y)

}



The running time of Euclid’s 
Algorithm

Theorem: Euclid’s GCD algorithm runs it time O(N), where N is 
the input length (N=log2x + log2y).
Proof:

Every iteration of the loop (except maybe the first) the value of xy 
decreases by a factor of at least 2/3.  Thus after k+1 iterations the 
value of xy is at most               the original value.
Thus the algorithm must terminate when k satisfies:             
(for the original values of x, y).
Thus the algorithm runs for at most                           iterations.
Each iteration has only a constant L number of operations, thus 
the total number of operations is at most
Formally,
Thus the running time is O(N).

k)3/2(
1)3/2( <kxy

xy2/3log1+

Lxy)log1( 2/3+
LNyxLLxy 3)log2log21()log1( 222/3 ≤++≤+
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Designing Algorithms
There is no single recipe for inventing algorithms
There are basic rules:

Understand your problem well – may require much mathematical 
analysis!
Use existing algorithms (reduction) or algorithmic ideas

There is a single basic algorithmic technique: 
Divide and Conquer

In its simplest (and most useful) form it is simple induction
In order to solve a problem, solve a similar problem of smaller size

The key conceptual idea:
Think only about how to use the smaller solution to get the larger one
Do not worry about how to solve the smaller problem (it will be solved 
using an even smaller one) 



Recursion
A recursive method is a method that contains a call 
to itself 
Technically:

All modern computing languages allow writing methods that 
call themselves
We will discuss how this is implemented later

Conceptually:
This allows programming in a style that reflects divide-n-
conquer algorithmic thinking
At the beginning recursive programs are confusing – after a 
while they become clearer than non-recursive variants



Factorial
sub factorial {

my $n = shift @_; // retrieve input

if ($n == 0) {

return 1;  // if input is 0, return 1

} else {  

// otherwise, compute the factorial of $n-1,

// multiply it by $n and return the product

return $n * factorial($n-1);

}

}

print “5! = “,factorial(5),”\n”;



Elements of a recursive program

Basis: a case that can be answered without 
using further recursive calls 

In our case:    if ($n==0) { return 1; }
Creating the smaller problem, and invoking a 
recursive call on it

In our case:   factorial($n-1)
Finishing to solve the original problem

In our case:   return $n; //solution of recursive call



Tracing the factorial method

print “5! = “,factorial(5),”\n”;

5 * factorial(4)
4 * factorial(3)

3 * factorial(2)
2 * factorial(1)

1 * factorial(0)
return 1

return 1
return 2

return 6
return 24

return 120



Correctness of factorial method

Theorem: For every positive integer n, 
factorial($n) returns the value n!.
Proof: By induction on n:
Basis: for n=0, factorial(0) returns 1=0!.
Induction step: When called on n>1, factorial 
calls  factorial($n-1), which by the 
induction hypothesis returns   (n-1)!. The 
returned value is thus n*(n-1)!=n!.



Raising to power – take 1
sub power {

my ($x, $n) = @_;  // retrieve the input

if ($n == 0) {   // if $n is 0, return 1

return 1.0;

}

// otherwise, return $x multiplied by the

// result of power of x to the (n-1)th

return $x * power($x, $n-1);

}

print “3^9 = “,power(3,9),”\n”;



Running time analysis

Simplest way to calculate the running time of 
a recursive program is to add up the running 
times of the separate levels of recursion.
In the case of the power method:

There are n+1 levels of recursion 
power(x,n), power(x,n-1), power(x, n-2), … power(x,0)

Each level takes O(1) steps
Total time = O(n)



Raising to power – take 2
sub power2 {

my ($x, $n) = @_;

if ($n == 0) {

return 1.0;

}

if ($n%2 == 0) {

my $t = power2($x, $n/2);

return $t*$t;

}

return $x * power2($x, $n-1);

}



Analysis
Theorem: For any x and positive integer n, the power method 
returns     .
Proof: by complete induction on n.

Basis: For n=0, we return 1.
If n is even, we return power(x,n/2)*power(x,n/2).  By the 
induction hypothesis power(x,n/2) returns        , so we return 

If n is odd, we return x*power(x,n-1).  By the induction hypothesis 
power(x,n-1) returns         , so we return                      .

The running time is now O(log n):
After 2 levels of recursion n has decreased by a factor of at least 
two (since either n or n-1 is even, in which case the recursive call 
is with n/2)
Thus we reach n==0 after at most 2log2n levels of recursion
Each level still takes O(1) time.

nx

2/nx
nn xx =22/ )(

1−nx nn xxx =⋅ −1
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Algorithms for bioinformatics



Bring in the Bioinformaticians

Gene similarities between two genes with 
known and unknown function alert biologists 
to some possibilities
Computing a similarity score between two 
genes tells how likely it is that they have 
similar functions
Dynamic programming is a technique for 
revealing similarities between genes
The Change Problem is a good problem to 
introduce the idea of dynamic programming



The Change Problem

Goal: Convert some amount of money M into 
given denominations, using the fewest 
possible number of coins

Input: An amount of money M, and an array of d
denominations c = (c1, c2, …, cd), in a decreasing 
order of value (c1 > c2 > … > cd)

Output: A list of d integers i1, i2, …, id such that 
c1i1 + c2i2 + … + cdid = M

and i1 + i2 + … + id is minimal



Change Problem: Example

Given the denominations 1, 3, and 5, what is 
the minimum number of coins needed to make 
change for a given value?

1 2 3 4 5 6 7 8 9 10

1 1 1

Value

Min # of coins

Only one coin is needed to make change for 
the values 1, 3, and 5



Change Problem: Example (cont’d)

Given the denominations 1, 3, and 5, what is 
the minimum number of coins needed to make 
change for a given value?

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 2 2

Value

Min # of coins

However, two coins are needed to make 
change for the values 2, 4, 6, 8, and 10.



Change Problem: Example (cont’d)

1 2 3 4 5 6 7 8 9 10

1 2 1 2 1 2 3 2 3 2

Value

Min # of coins

Lastly, three coins are needed to make 
change for the values 7 and 9

Given the denominations 1, 3, and 5, what is 
the minimum number of coins needed to make 
change for a given value?



Change Problem: Recurrence
This example is expressed by the following 
recurrence relation:

minNumCoins(M) =

minNumCoins(M-1) + 1

minNumCoins(M-3) + 1

minNumCoins(M-5) + 1

min 
of

Given the denominations c: c1, c2, …, cd, the 
recurrence relation is:

minNumCoins(M) =

minNumCoins(M-c1) + 1

minNumCoins(M-c2) + 1

…

minNumCoins(M-cd) + 1

min 
of



Change Problem: A Recursive Algorithm

1. RecursiveChange(M,c,d)
2. if M = 0
3. return 0
4. bestNumCoins = infinity
5. for i = 1 to d
6. if M ≥ ci
7. numCoins = RecursiveChange(M – ci , c, d)
8. if numCoins + 1 < bestNumCoins
9. bestNumCoins = numCoins + 1
10. return bestNumCoins



RecursiveChange Is Not Efficient
It recalculates the optimal coin combination 
for a given amount of money repeatedly

i.e., M = 77, c = (1,3,7):
Optimal coin combo for 70 cents is 
computed 9 times!



The RecursiveChange Tree

74

77

76 70

75 73 69 73 71 67 69 67 63

74 72 68

72 70 66

68 66 62

72 70 66

70 68 64

66 64 60

68 66 62

66 64 60

62 60 56

. . . . . .
70 70 70 7070



We Can Do Better
We’re re-computing values in our algorithm more 
than once

Save results of each computation for 0 to M

This way, we can do a reference call to find an 
already computed value, instead of re-computing 
each time

• Running time becomes M*d, where M is the value of 
money and d is the number of denominations 



The Change Problem: Dynamic Programming

1. DPChange(M,c,d)
2. bestNumCoins0 = 0
3. for m = 1 to M
4. bestNumCoinsm = infinity
5. for i = 1 to d
6. if m ≥ ci
7. if bestNumCoinsm – ci+ 1 < bestNumCoinsm
8. bestNumCoinsm = bestNumCoinsm – ci+ 1
9. return bestNumCoinsM



DPChange: Example

0

0 1

0 1 2

0 1 2 3

0 1 2 3 4

0 1 2 3 4 5

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9

0 1

0

0 1 2

0 1 2 1

0 1 2 1 2

0 1 2 1 2 3

0 1 2 1 2 3 2

0 1 2 1 2 3 2 1

0 1 2 1 2 3 2 1 2

0 1 2 1 2 3 2 1 2 3

c = (1,3,7)
M = 9



Manhattan Tourist Problem (MTP)

Imagine seeking a 
path (from source 
to sink) to travel 
(only eastward and 
southward) with the 
most number of 
attractions (*) in the 
Manhattan grid Sink

*

*

*

*
*

**

* *

*

*

Source

*



Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted grid.

Input: A weighted grid G with two distinct 
vertices, one labeled “source” and the other 
labeled “sink”

Output: A longest path in G from “source” to 
“sink”



MTP: An Example

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i c

oo
rd

in
at

e

13

source

sink

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4 19

95

15

23

0

20

3

4



MTP: Simple Recursive Program

MT(n,m)
if n=0 or m=0

return MT(n,m)
x = MT(n-1,m)+

length of the edge from (n- 1,m) to (n,m)
y = MT(n,m-1)+

length of the edge from (n,m-1) to (n,m)
return max{x,y}



1

5

0 1

0

1

i

source

1

5
S1,0 = 5

S0,1 = 1

• Calculate optimal path score for each vertex in the graph

• Each vertex’s score is the maximum of the prior vertices 
score plus the weight of the respective edge in between

MTP: Dynamic Programming
j



MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 33

-5

j



MTP: Dynamic Programming (cont’d)

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5
8

103

5

-5
9

13
1-5

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

j



MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j



MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15



MTP: Dynamic Programming (cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

(showing all back-traces)

Done!



MTP: Recurrence

Computing the score for a point (i,j) by the 
recurrence relation:

si, j   = max si-1, j + weight of the edge between (i-1, j) and (i, j) 

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m  for a n by m grid

(n = # of rows, m = # of columns)



Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is then given by:

sB = max 
of

sA1 + weight of the edge  (A1, B)

sA2 + weight of the edge  (A2, B)

sA3 + weight of the edge  (A3, B)

B

A3

A1

A2



Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the 
recurrence relation:

sx = max 

of

sy + weight of vertex (y, x) where 

y є Predecessors(x)

• Predecessors (x) = set of vertices that have edges
leading to x

•The running time for a graph G(V, E)                        
(V is the set of all vertices and E is the set of all edges)      
is O(E) since each edge is evaluated once



Traveling in the Grid

•The only hitch is that one must decide on the order in 
which to visit the vertices 

•By the time the vertex x is analyzed, the values sy for 
all its predecessors y should be computed –
otherwise we are in trouble. 

•We need to traverse the vertices in some order



Traversing the Manhattan Grid

3 different strategies:
a) Column by column
b) Row by row
c) Along diagonals

a) b)

c)



Alignment: 2 row representation

Alignment :  2 * k matrix ( k ≥ max(m, n ))

A T -- G T A T --

A T C G -- A -- C

letters of v

letters of w
T

T

AT CT GAT
T GCAT A

v  :
w :

m = 7 
n = 6

4 matches 2 insertions 2 deletions

Given 2 DNA sequences v and w:



Aligning DNA Sequences

V = ATCTGATG

W = TGCATAC

n = 8
m = 7

CATACGT
GTAGTCTAV

W 

match

deletion
insertion

mismatch

indels

4
1
2
2

matches
mismatches
insertions
deletions

Note: 
insertions and 
deletions are 
together 
called indels



Longest Common Subsequence (LCS) – Alignment 
without Mismatches

• Given two sequences 

v = v1 v2…vm and w = w1 w2…wn

• The LCS of v and w is a sequence of positions in 

v: 1 < i1 < i2 < … < it < m

and a sequence of positions in 

w: 1 < j1 < j2 < … < jt < n

such that it -th letter of v equals to jt-letter of w and t
is maximal



LCS: Example

A T -- C T G A T C
-- T G C T -- A -- C

elements of v

elements of w
--

A
1

2

0

1

2

2

3

3

4

3

5

4

5

5

6

6

6

7

7

8

j coords:

i coords:

Matches shown in red
positions in v:
positions in w: 

2 < 3 < 4 < 6 < 8

1 < 3 < 5 < 6 < 7

Every common subsequence is a path in 2-D grid

0

0

(0,0) (1,0) (2,1) (2,2) (3,3) (3,4) (4,5) (5,5) (6,6) (7,6) (8,7)



LCS: Dynamic Programming

Find the LCS of two 
strings

Input: A weighted graph G
with two distinct vertices, 
one labeled “source” one 
labeled “sink”
Output: A longest path in 
G from “source” to “sink”



LCS Problem as Manhattan Tourist Problem

T

G

C

A

T

A

C

1

2

3

4

5

6

7

0i

A T C T G A T C
0 1 2 3 4 5 6 7 8

j



Computing LCS
Let vi =   prefix of v of length i:    v1 … vi

and wj =  prefix of w of length j:   w1 … wj

The length of LCS(vi,wj) is computed by:

si, j = max
si-1, j

si, j-1

si-1, j-1 + 1 if  vi = wj i,j

i-1,j

i,j -1

i-1,j -1

1 0

0



Every Path in the Grid Corresponds to an 
Alignment 

4

3

2

1

0

43210

W A T C G

A

T

G

T

V 0 1 2  2  3 4

V =    A T - G T

|  |       |

W=    A T C G –

0 1 2  3 4 4



The Alignment Grid

Every alignment path 
is from source to sink



Alignments in Edit Graph (cont’d)

and       represent indels
in v and w with score 0.

represent matches with 
score 1.
• The score of the 
alignment path is 5.
Every path in the edit graph 
corresponds to an 
alignment:



Alignment as a Path in the Edit Graph

Old AlignmentOld Alignment
01223012234545677677

v=  AT_Gv=  AT_GTTTTAT_AT_
w=  ATCGw=  ATCGT_T_A_CA_C

01234012345555667667

New AlignmentNew Alignment
01223012234545677677

v=  AT_Gv=  AT_GTTTTAT_AT_
w=  ATCGw=  ATCG_T_TA_CA_C

01234012344545667667



Dynamic Programming Example

Initialize 1st row and 
1st column to be all 
zeroes. 

Or, to be more 
precise, initialize 0th

row and 0th column to 
be all zeroes.



Dynamic Programming Example

Si,j =     Si-1, j-1

max     Si-1, j

Si, j-1

value from NW +1, if vi = wj
value from North (top)
value from West (left)

Arrows              show where the score 
originated from.   

if from the top

if from the left

if vi = wj



Backtracking Example

Find a match in row and column 2.

i=2, j=2,5 is a match (T).              

j=2, i=4,5,7 is a match (T).

Since vi = wj, si,j = si-1,j-1 +1

s2,2 = [s1,1 = 1] + 1 
s2,5 = [s1,4 = 1] + 1
s4,2 = [s3,1 = 1] + 1
s5,2 = [s4,1 = 1] + 1
s7,2 = [s6,1 = 1] + 1



Backtracking Example

Continuing with the 
dynamic programming  
algorithm gives this 
result.



LCS Algorithm

1. LCS(v,w)

2. for i = 1 to n
3. si,0 = 0
4. for j = 1 to m
5. s0,j = 0
6. for i = 1 to n
7. for j = 1 to m
8. si-1,j
9. si,j = max   si,j-1
10. si-1,j-1 + 1, if vi = wj
11. “ “ if si,j = si-1,j

bi,j = “ “ if si,j = si,j-1
“ “ if si,j = si-1,j-1 + 1

return (sn,m, b)



Now What?

LCS(v,w) created the 
alignment grid

Now we need a way 
to read the best 
alignment of v and w

Follow the arrows 
backwards from sink



Printing LCS: Backtracking

1. PrintLCS(b,v,i,j)
2. if i = 0 or j = 0
3. return
4. if bi,j = “ “
5. PrintLCS(b,v,i-1,j-1)
6. print vi
7. else
8. if bi,j = “ “
9. PrintLCS(b,v,i-1,j)
10. else
11. PrintLCS(b,v,i,j-1)



LCS Runtime

It takes O(nm) time to fill in the nxm dynamic 
programming matrix.

Why O(nm)?  The pseudocode consists of a 
nested “for” loop inside of another “for” loop 
to set up a nxm matrix. 



Summary
The running times of algorithms is important!

If it doesn’t scale up, it won’t be useful, especially in 
bioinformatics

Recursion is a basic technique which is useful for 
breaking down problems into simpler ones
Dynamic programming, which uses recursion, is 
often used in bioinformatics as well

Shown to be mathematically accurate
However, it can be inefficient for more than two sequences

BLAST and FASTA use heuristics (human-like techniques to 
speed up the computations)


