Introduction to Algorithms

Kiyoko F. Aoki-Kinoshita

Computational problems

- A computational problem specifies an input-output relationship
- What does the input look like?
- What should the output be for each input?
- Example:
- Input: an integer number N
- Output: Is the number prime?
- Example:
- Input: A list of names of people
- Output: The same list sorted alphabetically
- Example:
- Input: A picture in digital format
- Output: An English description of what the picture shows

Algorithms

- An algorithm is an exact specification of how to solve a computational problem
- An algorithm must specify every step completely, so a computer can implement it without any further "understanding"
- An algorithm must work for all possible inputs of the problem.
- Algorithms must be:
- Correct: For each input, terminate and produce an appropriate output
- Efficient: run as quickly as possible, and use as little memory as possible - more about this later
- There can be many different algorithms for each computational problem.

Describing Algorithms

- Algorithms can be implemented in any programming language
- Usually we use "pseudo-code" to describe algorithms

Testing whether input N is prime:

```
For j = 2 .. N-1
```

 If the remainder of \(\mathrm{j} / \mathrm{N}\) is 0
 Output " N is composite" and halt
 Output "N is prime"

- In this course we will just describe algorithms in Perl and pseudocode

Greatest Common Divisor

- The first algorithm "invented" in history was Euclid's algorithm for finding the greatest common divisor (GCD) of two natural numbers
- Definition: The GCD of two natural numbers x, y is the largest integer j that divides both evenly (with remainder 0).
- The GCD Problem:
- Input: natural numbers x, y
- Output: $\operatorname{GCD}(x, y)$ - their GCD

Euclid's GCD Algorithm

```
sub gcd {
    my ($x, $y) = @; // retrieve i nput x and y
    while ($y ! = O) { // while y is not equal to O
            $t = $x % $y; // get the modulus of }x\mathrm{ and }
            $x = $y; // repl ace x by y
            $y = $t; // replace y by t
    }
    return $x; // return the result (gcd of x and y)
}
pri nt gcd( 14, 21),"\n";
```


Euclid's GCD Algorithm - sample

```
while ($y != O) { // while y is not equal to o
    $t = $x % $y; // get the modul us of x and y
    $x = $y; // replace x by y
    $y = $t; // replace y by t
}
```

Example: Computing GCD $(48,120)$

	t	x	y
After 0 rounds	--	72	120
After 1 round	$\mathbf{7 2}$	120	72
After 2 rounds	48	72	48
After 3 rounds	24	48	24
After 4 rounds	0	24	0

Output: 24

Termination of Euclid's Algorithm

- Why does this algorithm terminate?
- After any iteration we have that $x>y$ since the new value of y is the remainder of the division by the new value of x.
- In further iterations, we replace (x, y) with ($y, x \% y$), and $x \% y<x$, thus the numbers decrease in each iteration.
- Formally, the value of $x y$ decreases at each iteration (except, maybe, the first one). When it reaches 0 , the algorithm must terminate.

```
sub gcd {
    my ($x, $y) = @; // retrieve i nput }x\mathrm{ and y
    while ($y != O) { / / while y is not equal to o
        $t = $x % $y; // get the modul us of }x\mathrm{ and }
        $x = $y; // repl ace x by y
        $y = $t; // repl ace y by t
    }
    return $x; // return the result (gcd of x and y)
```

\}

Introduction to Algorithms

Running Time Analysis

How fast will your program run?

- The running time of your program will depend upon:
- The algorithm
- The input
- Your implementation of the algorithm in a programming language
- The compiler you use
- The operating system (OS) on your computer
- Your computer hardware
- Maybe other things: temperature outside; other programs on your computer; ...
- Our Motivation: analyze the running time of an algorithm as a function of only simple parameters of the input.

Basic idea: counting operations

- Each algorithm performs a sequence of basic operations:
- Arithmetic: $\quad($ low + high $) / 2$
- Comparison: if $(x>0) \ldots$
- Assignment: temp $=x$
- Branching: while (y!=0) \{...\}
- Idea: count the number of basic operations performed on the input.
- Difficulties:
- Which operations are basic?
- Not all operations take the same amount of time.
- Operations take different times with different hardware or compilers

Asymptotic running times

- Operation counts are only problematic in terms of constant factors.
- The general form of the function describing the running time is invariant over hardware, languages or compilers!

```
sub myMet hod{
    my $N = shift @;
    my $sq = O;
    for ($j =0; $j <$N ; $j ++)
    for($k=O; $k<$N ; $k++)
        $sq+1;
    return $sq;
}
```

- Running time is "about" N^{2}.
- We use "Big-O" notation, and say that the running time is $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Asymptotic behavior of functions

Mathematical Formalization

- Definition: Let f and g be functions from the natural numbers to the natural numbers. We write $f=O(g)$ if there exists a constant c such that for all $n: f(n) \leq c g(n)$.

$$
f=O(g) \Leftrightarrow \exists c \forall n: f(n) \leq c g(n)
$$

- This is a mathematically formal way of ignoring constant factors, and looking only at the "shape" of the function.
- $f=O(g)$ should be considered as saying that " f is at most g, up to constant factors".
- We usually will have f be the running time of an algorithm and g a nicely written function. E.g. The running time of the previous algorithm was $O\left(N^{2}\right)$.

Asymptotic analysis of algorithms

- We usually embark on an asymptotic worst case analysis of the running time of the algorithm.
- Asymptotic:
- Formal, exact, depends only on the algorithm
- Ignores constants
- Applicable mostly for large input sizes
- Worst Case:
- Bounds on running time must hold for all inputs.
- Thus the analysis considers the worst-case input.
- Sometimes the "average" performance can be much better
- Real-life inputs are rarely "average" in any formal sense

The running time of Euclid's GCD Algorithm

- How fast does Euclid's algorithm terminate?
- After the first iteration we have that $x>y$. In each iteration, we replace (x, y) with ($y, x \% y$).
- In an iteration where $x>1.5 y$ then $x \% y<y<2 x / 3$.
- In an iteration where $x \leq 1.5 y$ then $x \% y \leq y / 2<2 x / 3$.
- Thus, the value of $x y$ decreases by a factor of at least $2 / 3$ each iteration (except, maybe, the first one).

```
sub gcd {
    my ($x, $y) = @; // retrieve i nput x and y
    While ($y != O) { // while y is not equal to O
    $t = $x % $y; // get the rodulus of }x\mathrm{ and }
    $x = $y; // repl ace x by y
    $y = $t; // replace y by t
    }
    return $x; // return the result (gcd of x and y)
```


The running time of Euclid's

Algorithm

- Theorem: Euclid's GCD algorithm runs it time $O(N)$, where N is the input length ($N=\log _{2} x+\log _{2} y$).
- Proof:
- Every iteration of the loop (except maybe the first) the value of xy decreases by a factor of at least $2 / 3$. Thus after $k+1$ iterations the value of $x y$ is at most $(2 / 3)^{k}$ the original value.
- Thus the algorithm must terminate when k satisfies: $x y(2 / 3)^{k}<1$ (for the original values of x, y).
- Thus the algorithm runs for at most $1+\log _{3 / 2} x y \quad$ iterations.
- Each iteration has only a constant L number of operations, thus the total number of operations is at most $\left(1+\log _{3 / 2} x y\right) L$
- Formally, $\left(1+\log _{3 / 2} x y\right) L \leq L\left(1+2 \log _{2} x+2 \log _{2} y\right) \leq 3 L N$
- Thus the running time is $O(N)$.

Introduction to Algorithms

Recursion

Designing Algorithms

- There is no single recipe for inventing algorithms
- There are basic rules:
- Understand your problem well - may require much mathematical analysis!
- Use existing algorithms (reduction) or algorithmic ideas
- There is a single basic algorithmic technique:

Divide and Conquer

- In its simplest (and most useful) form it is simple induction
- In order to solve a problem, solve a similar problem of smaller size
- The key conceptual idea:
- Think only about how to use the smaller solution to get the larger one
- Do not worry about how to solve the smaller problem (it will be solved using an even smaller one)

Recursion

- A recursive method is a method that contains a call to itself
- Technically:
- All modern computing languages allow writing methods that call themselves
- We will discuss how this is implemented later
- Conceptually:
- This allows programming in a style that reflects divide-nconquer algorithmic thinking
- At the beginning recursive programs are confusing - after a while they become clearer than non-recursive variants

Factorial

sub factorial \{
my $\$ n=s h i f t$ @
if $(\$ n=O)\{$
return 1; // if input is O, return \mathbf{l}
\} else \{
// ot herwise, compute the factorial of $\$ \mathrm{n}-1$, // multiply it by $\$ n$ and r eturn the product return $\$ \mathbf{n}$ * factorial (\$n-1);
\}
\}
print " 5 ! = ", factori al (5)," $" n "$;

Elements of a recursive program

- Basis: a case that can be answered without using further recursive calls
- In our case: if (\$n==0) \{ return 1; \}
- Creating the smaller problem, and invoking a recursive call on it
- In our case: factorial(\$n-1)
- Finishing to solve the original problem
- In our case: return \$n; //solution of recursive call

Tracing the factorial method

```
print "5! = ",factorial (5),"\n";
    5 * factorial(4)
        4 * factorial(3)
        3 * factorial(2)
        2 * factorial(1)
        1 * factorial(0)
        return 1
        return 1
        return 2
        return 6
        return 24
    return 120
```


Correctness of factorial method

- Theorem: For every positive integer n, factori al ($\$ n$) returns the value n !.
- Proof: By induction on n:
- Basis: for $n=0$, fact or ial (o) returns 1=0!.
- Induction step: When called on $n>1$, factorial calls factorial ($\$ \mathrm{n}-1$), which by the induction hypothesis returns ($n-1$)!. The returned value is thus $n *(n-1)!=n!$.

Raising to power - take 1

sub power \{
my ($\$ x, \$ n$) $=$ @; // retrieve the input
 return 1. O;
\}
// othervise, return $\$ x$ maltiplied by the // result of power of x to the ($n-1$)th return $\$ \times$ * $\operatorname{power}(\$ \times, \quad \$ n-1)$;
\}
print "3^9 = ", power $(3,9), " \ n " ;$

Running time analysis

- Simplest way to calculate the running time of a recursive program is to add up the running times of the separate levels of recursion.
- In the case of the power method:
- There are $n+1$ levels of recursion
- power(x,n), power(x,n-1), power(x, n-2), ... power(x,0)
- Each level takes $O(1)$ steps
- Total time $=O(n)$

Raising to power - take 2

```
sulb power 2 {
    my ($x, $n) = @ ;
    if ($n=O) {
        return 1.O;
    }
    if ($n%<Q O) {
        my $t = power 2($x, $n/2);
        return $t*$t;
    }
    return $x * power 2($x, $n- 1);
}
```


Analysis

- Theorem: For any x and positive integer n, the power method returns X^{n}.
- Proof: by complete induction on n.
- Basis: For $\mathrm{n}=0$, we return 1 .
- If n is even, we return $\operatorname{power}(\mathrm{x}, \mathrm{n} / 2)^{\star} \operatorname{power}(\mathrm{x}, \mathrm{n} / 2)$. By the induction hypothesis power($x, n / 2$) returns $x^{n / 2}$, so we return $\left(x^{n / 2}\right)^{2}=x^{n}$
- If n is odd, we return x^{\star} power $(\mathrm{x}, \mathrm{n}-1)$. By the induction hypothesis power $(x, n-1)$ returns x^{n-1}, so we return $x \cdot x^{n-1}=x^{n}$.
- The running time is now $O(\log n)$:
- After 2 levels of recursion n has decreased by a factor of at least two (since either n or $n-1$ is even, in which case the recursive call is with $n / 2$)
- Thus we reach $n==0$ after at most $2 \log _{2} n$ levels of recursion
- Each level still takes O(1) time.

Introduction to Algorithms

Algorithms for bioinformatics

Bring in the Bioinformaticians

- Gene similarities between two genes with known and unknown function alert biologists to some possibilities
- Computing a similarity score between two genes tells how likely it is that they have similar functions
- Dynamic programming is a technique for revealing similarities between genes
- The Change Problem is a good problem to introduce the idea of dynamic programming

The Change Problem

Goal: Convert some amount of money \boldsymbol{M} into given denominations, using the fewest possible number of coins

Input: An amount of money \boldsymbol{M}, and an array of \boldsymbol{d} denominations $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{d}\right)$, in a decreasing order of value $\left(c_{1}>c_{2}>\ldots>c_{d}\right)$

Output: A list of d integers $i_{1}, i_{2}, \ldots, i_{d}$ such that

$$
c_{1} i_{1}+c_{2} i_{2}+\ldots+c_{d} i_{d}=M
$$

and $i_{1}+i_{2}+\ldots+i_{d}$ is minimal

Change Problem: Example

Given the denominations 1,3 , and 5 , what is the minimum number of coins needed to make change for a given value?

Value	1	2	3	4	5	6	7	8	9	10
Min \# of coins	1		1		1					

Only one coin is needed to make change for the values 1,3 , and 5

Change Problem: Example (cont'd)

Given the denominations 1,3 , and 5 , what is the minimum number of coins needed to make change for a given value?

Value	1	2	3	4	5	6	7	8	9	10
Min \# of coins	1	2	1	2	1	2		2		2

However, two coins are needed to make change for the values $2,4,6,8$, and 10 .

Change Problem: Example (cont'd)

Given the denominations 1,3 , and 5 , what is the minimum number of coins needed to make change for a given value?

Lastly, three coins are needed to make change for the values 7 and 9

Change Problem: Recurrence

This example is expressed by the following recurrence relation:

$$
\operatorname{minNumCoins}(M)=\min _{\text {of }}\left\{\begin{array}{l}
\operatorname{minNumCoins}(M-1)+1 \\
\operatorname{minNumCoins}(M-3)+1 \\
\operatorname{minNumCoins}(M-5)+1
\end{array}\right.
$$

Given the denominations \mathbf{c} : $\mathrm{c}_{1}, c_{2}, \ldots, c_{d}$, the recurrence relation is:

$$
\begin{aligned}
& \operatorname{minNumCoins}\left(M-c_{1}\right)+1 \\
& \operatorname{minNumCoins}\left(M-c_{2}\right)+1 \\
& \ldots \\
& \operatorname{minNumCoins}\left(M-c_{d}\right)+1
\end{aligned}
$$

Change Problem: A Recursive Algorithm

1. RecursiveChange (M, C, d)
2. if $M=0$
3. return 0
4. bestNumCoins = infinity
5. for $i=1$ to d
6. if $M \geq c_{i}$
numCoins $=\operatorname{RecursiveChange~}\left(M-c_{i}, c, d\right)$
if numCoins $+1<$ bestNumCoins bestNumCoins $=$ numCoins +1 return bestNumCoins

RecursiveChange Is Not Efficient

- It recalculates the optimal coin combination for a given amount of money repeatedly
- i.e., $\boldsymbol{M}=77, \boldsymbol{c}=(1,3,7)$:
- Optimal coin combo for 70 cents is computed 9 times!

The RecursiveChange Tree

We Can Do Better

- We're re-computing values in our algorithm more than once
- Save results of each computation for 0 to \boldsymbol{M}
- This way, we can do a reference call to find an already computed value, instead of re-computing each time
- Running time becomes $\boldsymbol{M}^{\star} \boldsymbol{d}$, where \boldsymbol{M} is the value of money and \boldsymbol{d} is the number of denominations

The Change Problem: Dynamic Programming

1. DPChange (M, C, d)
bestNumCoins $_{O}=0$
for $m=1$ to M bestNumCoins ${ }_{m}=$ infinity for $i=1$ to d
if $m \geq c_{i}$
if bestNumCoins ${ }_{m-c_{i}}+1<$ bestNumCoins $_{m}$ bestNumCoins $_{m}=$ bestNumCoins $_{m-c_{j}}+1$
return bestNumCoins ${ }_{M}$

DPChange: Example

Manhattan Tourist Problem (MTP)

Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid

Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted grid.

Input: A weighted grid \mathbf{G} with two distinct vertices, one labeled "source" and the other labeled "sink"

Output: A longest path in G from "source" to "sink"

MTP: An Example

MTP: Simple Recursive Program

$\mathrm{MT}(n, m)$
if $n=0$ or $m=0$
return $M T(n, m)$
$x=M T(n-1, m)+$
length of the edge from ($n-1, m$) to (n, m)
$y=M T(n, m-1)+$
length of the edge from ($n, m-1$) to (n, m)
return $\max \{x, y\}$

MTP: Dynamic Programming

- Calculate optimal path score for each vertex in the graph
- Each vertex's score is the maximum of the prior vertices score plus the weight of the respective edge in between

MTP: Dynamic Programming (cont'd)

MTP: Recurrence

Computing the score for a point (i,j) by the recurrence relation:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j}+\text { weight of the edge between }(i-1, j) \text { and }(i, j) \\
s_{i, j-1}+\text { weight of the edge between }(i, j-1) \text { and }(i, j)
\end{array}\right.
$$

The running time is $\boldsymbol{n} \times \boldsymbol{m}$ for a \boldsymbol{n} by \boldsymbol{m} grid ($\boldsymbol{n}=\#$ of rows, $\boldsymbol{m}=\#$ of columns)

Manhattan Is Not A Perfect Grid

- The score at point B is then given by:

$$
s_{B}=\max _{\text {of }}\left\{\begin{array}{l}
s_{A 1}+\text { weight of the edge }\left(A_{1}, B\right) \\
s_{A 2}+\text { weight of the edge }\left(A_{2}, B\right) \\
s_{A 3}+\text { weight of the edge }\left(A_{3}, B\right)
\end{array}\right.
$$

Manhattan Is Not A Perfect Grid (cont'd)

Computing the score for point \boldsymbol{x} is given by the recurrence relation:
$s_{x}=\max _{\text {of }}\left\{\begin{array}{r}s_{y}+\text { weight of vertex }(y, x) \text { where } \\ y \varepsilon \operatorname{Predecessors}(x)\end{array}\right.$

- Predecessors $(x)=$ set of vertices that have edges leading to x
- The running time for a graph $G(V, E)$
(\boldsymbol{V} is the set of all vertices and \boldsymbol{E} is the set of all edges) is $O(E)$ since each edge is evaluated once

Traveling in the Grid

-The only hitch is that one must decide on the order in which to visit the vertices

- By the time the vertex x is analyzed, the values s_{y} for all its predecessors y should be computed otherwise we are in trouble.
-We need to traverse the vertices in some order

Traversing the Manhattan Grid

- 3 different strategies:
- a) Column by column
- b) Row by row
ac) Along diagonals

b)

c)

Alignment: 2 row representation

Given 2 DNA sequences \mathbf{v} and \mathbf{w} :

$$
\begin{array}{lll}
v: & \text { ATCTGAT } & m=7 \\
w: \text { TGCATA } & n=6
\end{array}
$$

Alignment: 2 * \boldsymbol{k} matrix ($\boldsymbol{k} \geq \max (\boldsymbol{m}, \boldsymbol{n})$)
letters of v letters of w

A	T	--	G	T	T	A	T	--
A	T	C	G	T	--	A	--	C

4 matches 2 insertions 2 deletions

Aligning DNA Sequences

Longest Common Subsequence (LCS) - Alignment

 without Mismatches- Given two sequences

$$
\boldsymbol{v}=v_{1} v_{2} \ldots v_{m} \text { and } \boldsymbol{w}=w_{1} w_{2} \ldots w_{n}
$$

- The LCS of \boldsymbol{v} and \boldsymbol{w} is a sequence of positions in

$$
v: l \leq i_{l}<i_{2}<\ldots<i_{t} \leq m
$$

and a sequence of positions in

$$
w: l \leq j_{1}<j_{2}<\ldots<j_{t} \leq n
$$

such that i_{t}-th letter of \boldsymbol{v} equals to j_{t}-letter of \boldsymbol{w} and \boldsymbol{t} is maximal

LCS: Example

elements of v elements of w

j coords:
0

LCS: Dynamic Programming

- Find the LCS of two strings
Input: A weighted graph G with two distinct vertices, one labeled "source" one labeled "sink"

Output: A longest path in G from "source" to "sink"

$\begin{array}{llllllllll}\text { A } & \text { T } & \vec{~} & \text { G } & \text { T } & \stackrel{\downarrow}{T} & \text { A } & \stackrel{\downarrow}{T} & \vec{~} \\ \text { A } & \mathrm{T} & \text { C } & \mathrm{G} & \mathrm{T} & - & \mathrm{A} & - & \mathrm{C}\end{array}$

LCS Problem as Manhattan Tourist Problem

Computing LCS

Let $\boldsymbol{v}_{\boldsymbol{i}}=$ prefix of \boldsymbol{v} of length $i: \quad v_{1} \ldots v_{i}$ and $\boldsymbol{w}_{j}=$ prefix of w of length $j: w_{1} \ldots w_{j}$ The length of $\operatorname{LCS}\left(\boldsymbol{v}_{i}, \boldsymbol{w}_{\boldsymbol{j}}\right)$ is computed by:

$$
s_{i, j}=\max \left\{\begin{array}{l}
s_{i-1, j} \\
s_{i, j-1} \\
s_{i-1, j-1}+1 \text { if } v_{i}=w_{j}
\end{array}\right.
$$

Every Path in the Grid Corresponds to an

 Alignment| | W | A | | T | C G | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | | 0 | 1 | 2 | 3 | 4 | $\begin{array}{r} \downarrow \downarrow \rightarrow \forall \downarrow \\ 012234 \end{array}$ |
| | 0 | | | | | | $V=A T-G T$ |
| A | 1 | | | | | | $W=A T C G-$ |
| T | 2 | | | | | | 012344 |
| G | 3 | | | | | | |
| T | 4 | | | | | \bigcirc | |

The Alignment Grid

V	$=$	0	A	$\stackrel{2}{T}$	2	3	T	$\begin{aligned} & 5 \\ & T \end{aligned}$	$\begin{aligned} & 6 \\ & \mathrm{~A} \end{aligned}$	7	7
W	$=$		A			G	T	-	A	-	C
		0	1	2	3	4	5	5	6	6	7

- Every alignment path is from source to sink

Alignments in Edit Graph (cont'd)

* ATCGTAG

V	0	4	2	3	4	5	6	7
$\left.\Delta\right\|^{0}$	V							
$\begin{aligned} & 4] \\ & 74 \end{aligned}$		\checkmark						
Ω^{2}				\longrightarrow				
4^{3}					Δ			
4						1		
5						\checkmark		
$\left[\begin{array}{l} \Delta \\ \square \end{array}\right]_{6}$							4	
7							\checkmark	\longrightarrow

and \longrightarrow represent indels
in \mathbf{v} and \mathbf{w} with score 0 . represent matches with score 1.

- The score of the alignment path is 5 .
Every path in the edit graph corresponds to an alignment:

Alignment as a Path in the Edit Graph

Old Alignment

0122345677
$v=A T_{-} G T A T_{-}$
$w=A T C G T$ _A_C
0123455667

New Alignment
0122345677
$v=A T_{-} G T A T _$
$w=A T C G _T A _C$
0123445667

Dynamic Programming Example

Initialize $1^{\text {st }}$ row and $1^{\text {st }}$ column to be all zeroes.

Or, to be more precise, initialize $0^{\text {th }}$ row and $0^{\text {th }}$ column to be all zeroes.

Dynamic Programming Example

$S_{i, j}=\int S_{i-1, j-1}$ value from NW +1, if $v_{i}=w_{j}^{\prime}$

Arrows show where the score originated from.
\uparrow if from the top
\longleftarrow if from the left
if $v_{i}=w_{j}$

Backtracking Example

w A
C
\mathfrak{G}
 4

Find a match in row and column 2. $i=2, j=2,5$ is a match (T). $j=2, i=4,5,7$ is a match (T).

Since $v_{i}=w_{j,} s_{i, j}=s_{i-1, j-1}+1$

$$
\begin{aligned}
& s_{2,2}=\left[s_{1,1}=1\right]+1 \\
& s_{2,5}=\left[s_{1,4}=1\right]+1 \\
& s_{4,2}=\left[s_{3,1}=1\right]+1 \\
& s_{5,2}=\left[s_{4,1}=1\right]+1 \\
& s_{7,2}=\left[s_{6,1}=1\right]+1
\end{aligned}
$$

Backtracking Example

Continuing with the dynamic programming algorithm gives this result.

LCS Algorithm

1. $\operatorname{LCS}(\mathbf{v}, \mathbf{w})$

$$
\begin{aligned}
\text { for } i & =1 \text { to } n \\
s_{i, o} & =0 \\
\text { for j } & =1 \text { to } m \\
s_{o, j} & =0 \\
\text { for } i & =1 \text { to } n \\
\text { for } j & =1 \text { to m }
\end{aligned}
$$

$$
\begin{aligned}
& S_{i, j}=\max \left\{\begin{array}{l}
S_{i-1, j} \\
S_{i, j-1} \\
S_{i-1, j-1}+1, \quad i f \quad v_{i}=w_{j}
\end{array}\right.
\end{aligned}
$$

return ($s_{n, m}$ b)

Now What?

- LCS(v,w) created the alignment grid
- Now we need a way to read the best alignment of v and w
- Follow the arrows backwards from sink

Printing LCS: Backtracking

1. $\operatorname{PrintLCS}(\mathbf{b}, \mathbf{v}, i, j)$

$$
\text { if } i=0 \text { or } j=0
$$ return

if $b_{i, j}=" \ "$
PrintLCS(b,v,i-1,j-l) print v_{i}
else
if $b_{i, j}=" \uparrow$ "
PrintLCS(b,v,i-1,j)
else
PrintLCS(b,v,i,j-l)

LCS Runtime

- It takes $\mathrm{O}(\mathrm{nm})$ time to fill in the $n x m$ dynamic programming matrix.
- Why $\mathrm{O}(n m)$? The pseudocode consists of a nested "for" loop inside of another "for" loop to set up a nxm matrix.

Summary

- The running times of algorithms is important!
- If it doesn't scale up, it won't be useful, especially in bioinformatics
- Recursion is a basic technique which is useful for breaking down problems into simpler ones
- Dynamic programming, which uses recursion, is often used in bioinformatics as well
- Shown to be mathematically accurate
- However, it can be inefficient for more than two sequences
- BLAST and FASTA use heuristics (human-like techniques to speed up the computations)

